18,764 research outputs found

    Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice

    Full text link
    Hybrid (exotic) mesons, which are important predictions of quantum chromodynamics (QCD), are states of quarks and anti-quarks bound by excited gluons. First principle lattice study of such states would help us understand the role of ``dynamical'' color in low energy QCD and provide valuable information for experimental search for these new particles. In this paper, we apply both improved gluon and quark actions to the hybrid mesons, which might be much more efficient than the previous works in reducing lattice spacing error and finite volume effect. Quenched simulations were done at Ī²=2.6\beta=2.6 and on a Ī¾=3\xi=3 anisotropic 123Ɨ3612^3\times36 lattice using our PC cluster. We obtain 2013Ā±26Ā±712013 \pm 26 \pm 71 MeV for the mass of the 1āˆ’+1^{-+} hybrid meson qĖ‰qg{\bar q}qg in the light quark sector, and 4369Ā±37Ā±994369 \pm 37 \pm 99Mev in the charm quark sector; the mass splitting between the 1āˆ’+1^{-+} hybrid meson cĖ‰cg{\bar c}c g in the charm quark sector and the spin averaged S-wave charmonium mass is estimated to be 1302Ā±37Ā±991302 \pm 37 \pm 99 MeV. As a byproduct, we obtain 1438Ā±32Ā±571438 \pm 32 \pm 57 MeV for the mass of a P-wave 1++1^{++} uĖ‰u{\bar u}u or dĖ‰d{\bar d}d meson and 1499Ā±28Ā±651499 \pm 28 \pm 65 MeV for the mass of a P-wave 1++1^{++} sĖ‰s{\bar s}s meson, which are comparable to their experimental value 1426 MeV for the f1(1420)f_1(1420) meson. The first error is statistical, and the second one is systematical. The mixing of the hybrid meson with a four quark state is also discussed.Comment: 12 pages, 3 figures. Published versio

    Discussion on Event Horizon and Quantum Ergosphere of Evaporating Black Holes in a Tunnelling Framework

    Full text link
    In this paper, with the Parikh-Wilczek tunnelling framework the positions of the event horizon of the Vaidya black hole and the Vaidya-Bonner black hole are calculated respectively. We find that the event horizon and the apparent horizon of these two black holes correspond respectively to the two turning points of the Hawking radiation tunnelling barrier. That is, the quantum ergosphere coincides with the tunnelling barrier. Our calculation also implies that the Hawking radiation comes from the apparent horizon.Comment: 8 page

    Multivariate Nonnegative Quadratic Mappings

    Get PDF
    In this paper we study several issues related to the characterization of speci c classes of multivariate quadratic mappings that are nonnegative over a given domain, with nonnegativity de ned by a pre-speci ed conic order.In particular, we consider the set (cone) of nonnegative quadratic mappings de ned with respect to the positive semide nite matrix cone, and study when it can be represented by linear matrix inequalities.We also discuss the applications of the results in robust optimization, especially the robust quadratic matrix inequalities and the robust linear programming models.In the latter application the implementational errors of the solution is taken into account, and the problem is formulated as a semide nite program.optimization;linear programming;models

    Matrix convex functions with applications to weighted centers for semidefinite programming

    Get PDF
    In this paper, we develop various calculus rules for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by Loewner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function -log X to study a new notion of weighted convex centers for semidefinite programming (SDP) and show that, with this definition, some known properties of weighted centers for linear programming can be extended to SDP. We also show how the calculus rules for matrix convex functions can be used in the implementation of barrier methods for optimization problems involving nonlinear matrix functions.matrix convexity;matrix monotonicity;semidefinite programming

    Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows

    Get PDF
    In this paper, an improved three-dimensional color-gradient lattice Boltzmann (LB) model is proposed for simulating immiscible multiphase flows. Compared with the previous three-dimensional color-gradient LB models, which suffer from the lack of Galilean invariance and considerable numerical errors in many cases owing to the error terms in the recovered macroscopic equations, the present model eliminates the error terms and therefore improves the numerical accuracy and enhances the Galilean invariance. To validate the proposed model, numerical simulation are performed. First, the test of a moving droplet in a uniform flow field is employed to verify the Galilean invariance of the improved model. Subsequently, numerical simulations are carried out for the layered two-phase flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using the improved model, the numerical accuracy can be significantly improved in comparison with the color-gradient LB model without the improvements. Finally, the capability of the improved color-gradient LB model for simulating dynamic multiphase flows at a relatively large density ratio is demonstrated via the simulation of droplet impact on a solid surface.Comment: 9 Figure
    • ā€¦
    corecore